by Mike Pemberton, ITT Industrial Process

Pumps & Systems, February 2008

The second article of this three-part series on "Dematerializing the Process" explores how future industrial process plants will address rising operating costs plus energy and environmental concerns. Click here to read part one and part three.  

Here's just a sampling of industrial market headlines: Experienced human capital is scarce. Raw material costs are escalating. Energy and the environment are becoming constraints on economic growth. Information technology is the primary economic driver. The process plant of tomorrow is minimally staffed. Manufacturing flexibility is required to customize products for rapidly changing market demands. Manufacturing efficiency is the key to sustainability. Consolidation, globalization and information integration have spawned an array of new and innovative management, sales and manufacturing strategies.

The past may be prologue to the future, but the time between the two seems increasingly short. In the past, labor, capital and raw materials were considered the underpinnings of wealth creation. Today, real-time process knowledge and innovative management strategies have become far more important for creating value, as evident in the headlines above. Accordingly, the time for systemic change is now. . . the opportunity to reinvent industrial manufacturing and the products and services that surround it have never been greater since the beginning of the industrial revolution.

The ubiquitous use of information technology-through sensors and embedded chips in process equipment-increasingly offers not only process data but also real-time asset information that is needed for an integrated view of the production process. Coupled with management practices for equipment selection based on extensive use of life cycle cost analysis, plant owners and associated stakeholders now have the information tools necessary to make decisions that lead to flexible and sustainable production processes. The direct link between expanding information technology utilization and economic results is clear. These collective changes constitute "smart" manufacturing.

The emergence of intelligent motor systems, including "smart" pumps, has also opened the door for industrial suppliers to offer new and innovative product and service offerings that were not feasible in the past. Historically, process plant design has been based on selecting the equipment required to meet production target while achieving the basic goals of safety, operability and profitability. In the future, "smart" plant design will meet these basic goals while achieving the lowest life cycle cost for the capital employed.

In order to build a smart plant, you must design smart sub-systems that report on equipment health and efficiency. Real-time information allows operators to diagnose problems to keep the machine running at maximum performance. It is no longer acceptable to design plants that work-they must work efficiently to achieve the maximum return on capital employed.

Efficient Systems of the Future

A highly efficient pumping system is not merely a system with an energy efficient motor. Improving total system efficiency, not just one component, is the key to maximizing cost savings. The following elements are involved in the overall energy flow of a pumping system. Each element, or interface, adds inefficiency. The overall pump system efficiency is the product of the efficiency of each of the components. Note that the pump is just one of these elements:

  • Electric utility feeder (higher voltages and power factors, plus wire resistance, reduce these losses)
  • Transformer
  • Motor breaker / starter
  • Adjustable speed drive (offers extensive system data from which to infer system performance)
  • Motor (available in various efficiency ratings and, in some cases, with embedded intelligence)
  • Coupling
  • Pump (provides energy transfer to the pumped liquid)
  • Fluid system (including valves, piping and fittings which all add to the friction loss)
  • Ultimate fluid process or transfer objective (rate of flow with required head)

Using financial measures to justify equipment selection is also becoming paramount. This takes the guesswork out of previous assumptions about equipment design. You will know what the life cycle costs are in advance. . . no more excuses for fostering an inefficient design. Today, life cycle cost must be part of the justification, not simply desirable, in order to make sound long-term decisions. Once the system is installed, the embedded intelligence will provide real-time condition monitoring of equipment performance to validate efficient operation, quantify the savings and signal when the equipment needs maintenance. This "intelligence" is the cornerstone of "smart" manufacturing.

For new pump system projects, the design should consider all of the elements that constitute the system. Prior studies have shown that, due to product and transmission inefficiencies, only 5 percent of the fuel used to generate electricity is actually converted to useful work in the form of moving fluid through the process pipe. By optimizing the "system," through selecting the best design and sizing the components to support operating efficiencies, an estimated 20 percent of the fuel used to generate electricity can be converted to useful work.

Opportunities for Efficiency

The following performance improvement opportunities should be considered: